365·(wm)完美体育-官方网站-App Store
 
 

电气自动化控制十篇

浏览: 次    发布日期:2023-12-03

  电气工程是当今世界科技的核心部分之一,更是核心科技里不可或缺的一个部分,具有非常大的发展前景。自动化控制是制造业、工厂、农业等生产领域里的机械电气为一体的自动化集成控制技术。城市化发展与建设不可缺少此两部分中任一一部分,所以两者结合可以有助于城市化建设的快速发展。

  电气自动化系统是通过屏蔽传输信号、设备接地信号处理及选择合适的抗干扰措施等主要部分来完成的。基本上选择设备时,人们要选择那些已经经过长时间实践检验过的而且是比较可靠且稳定性好的设备,只有选择这个稳定可靠的设备,才能更好的适应在工作环境比较恶劣的施工现场之中,以保证设备系统能够正常运行,尽量降低设备发生故障的情况,以确保发生情况时能够及时有效的组织维修工作。系统组态采用了软件的两次开发功能,除了显示监控工作流程的动态,还能显示监控历史工作流程的数据、趋势图以及其他相关的数据,并且具有打印的功能。电气自动化系统含有两个个重要优点,一是自身的易扩充优点,系统自身保留了一些必要的数据接口,保留的这些接口能够更有效的对系统进行管理和对整个生产过程的监控。二是实用性比较强的优点,它具有现场的手动功能,如仪表室内手动、现场手动、自动三种控制方法,它可以根据系统运行中出现的具体情况而对应出相应的策略方法,从而利用不同的控制方式来满足不同的需求。

  1)合理配置配电设置,确保资源优化及合理利用。电气自动化系统的设计充分考虑到了设备长期在恶劣的工作环境中运行,尽量保证设备安全运行,然后也要满足在正常的工作情况下,合理利用资源,节约用电。

  2)选择设备的时候,尽可能的选择低耗能、低成本的设备,减少电力的消耗,而且又不影响正常的系统运行生产。

  3)在设计的过程中,保证系统正常运行工作的前提下,尽可能的调查各个系统部件的设计比例系数,这样可以在提高负荷率的时候也能减少电力的浪费。

  自动化系统在运行的时候会发出一些特殊的指令,而这些指令会对照相应的设备进行传送,并且能够非常有效率的立刻传送到相应的设备里面,而且因为各个设备之间存在的不同的编码,所以传送的各个指令也是不一样的,这样错误率降低,效率就有所提高,因此该系统是高校的控制技术,而且系统能够跟信息中心进行一个信息的互相反馈的效果,从而更加确保了信息的准确性和及时性。

  该技术除了具有高效率、准确之外,还有一项优势,那就是全时段实时监控。现阶段的电气工程技术是24小时全天不间断的运作的,根据以往的经验来说,平常在夜深或者是管理盲区的时候,是故障发生的高峰期,在容易发生故障的时间内,我们正常的管理模式是肯定不会有效果的,并且也无法全部监控到。但是自动化控制这项技术可以弥补我们的不足,它能够24小时不间断的实时监控全部过程,而且实现系统的一个控制和调配直接的合作。

  安全一直是国内生产最重要的一个思想,不能保证安全,就不能保证一切。自动化控制系统最大的优点就在于安全这一点上,在生产生活之中,安全第一。但是电气工程肯定会具备危险的成分在里面,由于人员的操作失误或者一切其他的环境因素,危险时常发生,而造成的伤亡情况更是频频发生。怎么样才能有效的降低危险性,自动化成了一个选择,它能够及时发现不正确的运作情况,对人员的安全起了一层保障的作用。

  所谓的DCS系统也就是分布式控制系统,“DCS”这个称呼是由英语单词缩写而成来的。相对于集中式的控制系统来说,DCS系统是一种更为高级和先进的新型系统。任何事物都是在不断进步的,系统也是不能除外的,正是由于时间的不断积累,造就了系统的不断完善,所以出现了系统的两个优点。这两个优点造就了电气自动化系统在以后的工作、生活中不可或缺的重要性。

  自动化系统除了有点之外,必然也存在的缺点,而且缺点十分明显,一共存在2个缺点,一是实时的集中监控会是所有的功能集中在一个处理器之中,这样会造成它的运作速度过慢,从而导致整个系统运行的速度过慢。二是集中监控造成了主机的容量在持续的降低,因为整个系统把所有的设备都放入监控之中,这就导致了监控负担过重,后期需要不断的增加电缆数量,变相的说也就是加大了投入的成本,而且可靠性也降低。

  电气工程与自动化控制的系统包含的最重要的部分是信息技术,它主要体现在以下几个方面:第一,表现在管理层面之中。在企业之中,企业的人力资源管理、会计核算等一些相关数据的存取可以用特定的方式来进行操作,而且,对于生产过程中的运行监控能够用比较直观的方式体现出来,从中可以及时的掌握生产运作中的相关信息。第二,在电气自动化、系统和设备之间能够利用信息技术进行一个相对的比较。伴随着微电子和微处理器技术的广泛应用,当初定义非常明确的设备界限也开始慢慢点的模糊了,相对应的一些通讯能力、软件结构以及一些容易使用和统一的组态环境变得更重要了。

  OPC技术IEC61131的颁布和Microsoft的Windows平台的广泛使用使得未来的电气技术在生产、生活、工作之中得到广泛运用,计算机技术在未来的电气工程中将会发挥不可替代的作用。

  IEC61131的颁布,使得全世界200多个PLC厂家的控制系统的产品编程接口开始标准化。IEC61131成了一个国际化的标杆,正在被全世界的厂商所接受。

  计算机的广泛应用,使得电气自动化慢慢的成为了主流,Windows平台的容易操作以及使用,使更多的用户开始采纳这个平台。

  自动化的生产企业按照我国提出的科技发展观为目标,自身的创新能力不断的进行提高,也从中不断的总结经验,从而提高自身的产品的技术含量,研发更具有自主知识产权的电气自动化控制系统。

  电气系统的通用化可以保证整个系统各个部分之间的数据通畅,而且企业可以通过网络对现场设备进行监督,所以系统结构的通用化非常重要。

  所以,根据以上两点,国内电气自动化的发展需要从简单的制造向创造去过渡。在确保中国企业产品的价格优势以外,还需要走出来一条健康的道路,企业要不断的去创造,吸收国外的技术、教训,来补充自身的不足,走出一条自主研发、创造、健康的发展之路。要把握好国家的科学发展的思想,调整发展的思路,一步步的走向国际舞台。

  电气自动化设备的运行状态好坏直接关系到整个系统的运行,所以为了更加有效的保证质量,提高运行效率,各个部分都应该注意运行中的缺陷管理。当问题出现时,应立即向各相关负责部门负责人联系报告,并按照生产管理制度组织抢修。当自动化设备出现了一下故障时,应立刻组织人员进行维修、检查:第一,监控中心发生异常情况;第二,当天无人值班时,调度主站与调度自动化系统的自动化双向通道都中断时;第三,当天无人值班时,电气自动化系统的主单元出现异常情况时;第四,当天无人值班时,系统运行工作状态出现异常时。

  现代的工业发展离不开电气自动化的支持,它是从电气化的基础之上发展起来的,我们生活和工作离不开电气自动化的支持,因为我们时刻与计算机和电力在做交流,这是一个非常庞大而且非常具有实用意义的系统。我们的生产之中存在着不可控制的环境因素在其中,而跟电气具有相关性的设备是时刻存在在外界环境之中的,我们无法改变环境因素而对电气设备进行保护,但是我们可以对电气系统本身做出系统的保护,这个就是电气自动化系统。

  [1]郭砚强,电气自动化及电气自动化的发展方向[J].品牌(理论月刊),2011(12).

  [2]武芳军,工业电气自动化的重要性和发展趋势[J].中小企业管理与科技,2011(4).

  [3]于洪亮,我国电气自动化发展的现状与趋势[J].民营科技,2011(12).

  在现代电厂设备组建与技改中,电气自动化控制系统是关系到电厂运行安全性、可靠性的关键。如何提高电厂电气自动化控制系统的可靠性是现代电厂电控技术应用、关系到我国电力系统技术发展的重点。随着现代电气自动化控制技术的不断发展,新型控制技术的应用对提高电气自动化控制系统可靠性起到了至关重要的作用。为了能够实现电厂电气自动化的监控需求、保障生产安全及机组的正常运转,现代电厂必须加强电气自动化控制系统的可靠性评测,以此提高电厂自控系统的安全性与可靠性、保障电厂机组的安全稳定运行。

  电厂环境中、湿度、温度、电气波等因素对电厂电气自动化控制设备的可靠性及使用寿命都有着极大的影响。为了保障电厂电子自动化控制系统能够在电厂环境下保障运行功能、减少监控过程中故障的发生,电厂电气自动化控制系统可靠性评测工作就显得尤为重要。加上近年来元器件企业的增多以及价格战影响使得元器件质量过于低下,也在一定程度上影响了电厂电气自动化自动控制系统的稳定性与可靠性。现代电厂应针对电子自动化控制系统需求以及电厂安全、稳定运转要求开展电气自动化控制系统可靠性评测,以此为我国电力能源的稳定供应、电厂生产的安全奠定基础。

  为了能够对电厂电子自动化控制系统进行科学有效的评测,制定严谨、科学的评测方案是实现电厂电气自动化控制系统可靠性评测的关键。为了保障电厂电气自动化控制系统可靠性评测方案编写制定的科学性,在评测方案制定前应对电厂电气自动化控制系统的运行环境进行调研与分析。根据电厂电气自动化控制系统运行环境的湿度、温度、振动情况等确定评测重点与要点。在此基础上确定元器件的评测内容。通过对系统运行环境的了解与掌握,科学制定系统元器件评测内容。在此基础上,了解电气自动化控制系统的软件系统需求及可靠性评测重点。通过硬件评测及软件评测两方面实现对电厂电气自动化控制系统可靠性的科学评测。同时,注重实验室检测与现场测试存在的差异与误差,以科学的态度及有效的评测方式对电厂电气自动化系统的可靠性进行评测。

  在确定电厂电气自动化控制系统可靠性评测方案及内容后,即应着手进行系统可靠性的实验室评测工作。根据现场应用环境调差结果,模拟现场条件对系统组成中的元器件进行可靠性的实验室评测。以实验室模拟环境对电气自动化控制系统的各元器件、组件等零部件进行实验。以此检测电厂电气自动化控制系统组件的可靠性。但是这种方式对试验检测费用、以及品种等要求较高,而且对然模拟现场环境但是与实际环境仍存在差异。其较为适用于电气自动化控制中使用较多的元器件的可靠性评测。

  电厂电气自动化控制系统可靠性的分析评测是利用科学的评测方式对系统软硬件系统进行分析与评价。在这一过程中应注重实际应用环境、参数等对系统的影响,同时注重系统评测过程中人为因素对评测结果的影响。以客观、科学的系统分析及评测实现可靠性评测目标。

  电厂电气自动化控制系统可靠性的现场评测是在系统建设完成后通过现场测试记录以及课中数据的整理分析,得出系统可靠性指标。该方式具有实验设备少、环境真实、数据可靠等优势,在现场评测时还应注意易损零件的实际受用寿命以及易发故障点的特点,为后期电气自动化控制系统故障的快速排查以及预防性养护技术应用奠定基础。

  综上所述,电厂电气自动化控制系统可靠性评测是现代电厂建设、技改中关系到电厂安全稳定运行的关键。针对近年来电气自动化技术的不断发展以及电厂电气自动化运行环境、参数等特殊性,现代电厂必须加强电气自动化控制系统可靠性评测工作的开展。利用科学的评测方案指导评测工作,为电厂电气自动化维修养护工作提供可靠数据,保障电厂设备的安全稳定运行。

  电气监控的任务就是根据系统变化,对发电机组的电压、功率等进行及时调整,确保电力系统的电压和频率。传统的电气监控主要是由DCS通过输入输出设备实现的对发电厂的电气部分信息的采集与控制。DCS是集散式控制系统的英文缩写(Distributed Control System)。即是所谓的分布式控制系统,这种系统是相对于集中式控制系统来说的计算机控制系统,是综合了计算机、显示、通信、控制于一体的4C技术。是在集中式控制系统的基础上发展的系统,主要功能是分散控制、分级管理、集中操作、组态灵活。具体的DCS与输入输出接口通过线缆连接,模拟量数据通过模数转换器转换成电流传出。但是DCS系统的信息处理量有限,并且需要大量的线缆以及模数转换器,成本比较高,控制效果不理想。

  首先,DCS电气自动控制系统对电压和电流的控制是通过变送器转换实现的,系统的接线很复杂,成本高,抗干扰能力不强。其次,DCS系统对于电气监测方面不到位。DCS的检测对于电流,电压的要求很严格。因此,许多的功能应用无法实现。例如故障的分析与诊断、电厂的经济性分析等,严重制约着管理效率的提升。第三,DCS系统的反应过于缓慢,无法实现对瞬态电信号的处理。DCS系统的反应时间通常是秒级,然而电厂的许多信号都是瞬态电流,是DCS系统无法控制的。最后,DCS系统是由许多的分散点组成。对于每一个信息采集点都需要一路专用的信号传输电缆,对于电厂的成千上万人的信息点来说,则需要复杂的电缆系统,造成了大量的空间、成本的浪费。

  随着科技的发展,一种基于先进的软硬件平台推出的新型电厂自动化控制系统出现。ECS是为了推进发电厂的电气自动控制的发展推广的。该系统应用计算机处理、信号的采集与处理、现场总线技术、以太网、继电保护等技术综合研发。应用计算机、现场总线、以太网、信号处理、继电保护等技术实现对发电厂的发电机、变压设备、电动机、反馈线等电器设备以及电气自动化装置的测量、处理、控制、保护、监测、故障分析、保护等功能。采用分层分布式系统构架自下向上分为:站控层、通信管理层、间隔层三层。其中,站控层包括硬件服务器、工作站等硬件。常用电抄表、电动机故障、录波分析等应用软件以及各种系统的通信接口。通信管理层包括通信网和通信管理装置,主要的功能是通过以太网和现场总线与DCS系统、智能设备、各子系统、电气后台监控系统进行通信。

  (1)ECS系统采用通信管理层和站控层组态一体化的设计,可保证组态调试的一次性完成,进行调试时可以更加方便,并且符合人的操作习惯。并且从整体出发综合考虑系统的通信功能,保证站控层、通信层、间隔层的通信速度,并开设与DCS、MIS、SIS的通讯接口。并且ECS与DCS互相通信是不受限制,还可以节省大量的通信缆线和变送器。ECS采用先进可靠地自动化电气装置,完全可以不受通讯功能限制并可以独立运行,保证了系统的安全性和可靠程度。

  (2)ECS系统的间隔层采用保护测控装置,其有比较完善的屏蔽、隔离等措施,抗干扰能力强,适用于各种复杂的环境。并且此系统还采用了冗余容错技术,包括了双现场总线网络、站控层设备冗余、站控层双以太网、双通信管理机设计以及DCS通信通道冗余等多种措施,保证了系统的稳定性。为保证系统的安全性还设置了防火墙、杀毒软件等措施,并采用网络分段、特殊数据格式、专用通道、加密数据算法等方法提高网络传输的安全性。并采用设置管理权限、逻辑闭锁、纠错等方法提高系统运行的安全性。在ECS系统中还增加了系统的自诊断和自恢复功能,这是传统的电气控制系统所不具备的。使系统的间隔层、通信管理层、站控层具备了自我诊断和恢复的功能。包括数据错误的诊断与处理、硬件故障的诊断、通信质量的诊断与处理等功能。还在通信管理层与间隔层的软件技术中添加了“看门狗”的中断方式,提高了系统的自恢复能力。并在通信管理层与站控层的同信中,采用双通道的传输模式实现了数据的备份和恢复功能。

  (3)ECS系统比传统的DCS系统的信息传输处理速度快很多。ECS系统的保护测控装置局采用高性能的DSP和微处理器,硬件系统采用了多CPU的智能化结构,采用世界先进的嵌入式实时多任务操作系统,大大提高了数据的处理速度。并且站控层采用100M/1000M的工业以太网,通过实时的数据库与商用数据库结合技术以及快速智能网桥技术,为电厂的快速数据访问及负载自动均恒的高速网络,并配以适应工业控制现场应用的高可靠换机以及网关网络通信设备,构成了强大的信息平台。站控层与间隔层支持工业以太网,并且支持PROFIBUS现场总线等通信方式大大拓展了通信的使用程度。站控层、间隔层支持双热备运行方式,采用高效新颖的算法同时收取双网数据并甄别数据的有效性,在遇到故障时不需要切换电路保证了系统的连续进行。

  新型的ESC电气化自动控制管理系统,是当前提高发电厂的管理效率的关键性技术,也是保证电力正常供应、节约电能的重要手段。据计算一座装机容量30万千瓦的发电厂,只要提高1%的管理效率就会节约7200度电能。所以,发电厂要加快电气自动控制系统的升级,是增加发电厂的效益和市场竞争力的重要手段。

  伴随煤炭产业近年来的飞速发展,煤矿现代化程度不断增加,而这一成果的达成则同大量自动化电气控制系统的应用密不可分,譬如井下瓦斯涌出量的监测、井下通风状况测量、井下水泵的控制等。正是通过这些电气自动化控制系统的应用,井下工人工作环境得以改善的同时其工作强度也得以显著降低。但随着电气自动化控制系统应用的不断增多,如何对其系统构建开展有效的优化,从而降低系统构建成本,并提升系统运行的稳定性,成为进一步推动煤矿企业良性发展的必要举措。

  现阶段,市场上各类用于电气自动化控制的PLC(可编程逻辑控制器)系统种类繁多,不同种类与品牌其应用性能上也存在一定的差别,因此在进行电气自动化系统设备选型上应对下述问题进行充分考虑。

  构建矿井电气自动化系统时必须立足矿井自身实际,明确自身系统规模后,再进行相应的设备型号选择。以常见的西门子PLC系统为例,当仅仅对井下瓦斯涌出量进行监测时,适宜选择SIEMENS-S7-200等各类微型PLC控制系统;当需要监测矿井井下水文变化进而调控水泵房设备运行状态时,由于涉及较为复杂的逻辑与闭环控制,适宜选择SIEMENS-S7-300等中型规模PLC控制系统;当电气自动化系统用于对整个井下安全作业生产进行综合监控,并实时针对井下作业进行安全管理时,系统需要涉及通讯、智能监控和监测等多种功能,因此适宜选择SIEMENS-S7-400等大型PLC控制系统[1]。

  进行电气自动化控制系统构建时,应依据系统实际使用需求和被控制对象通知难易程度,对I/O(输入输出端口)点的类别及数量进行选择,并制作相应的使用清单,同时根据系统控制量,提前预留一定的软硬件余量,避免浪费的同时对设备后期扩容进行一定的预估。此外,还需依据井下生产作业实际用电情况,对各电气设备输出点频率进行明确,进而对输出端所采用的装置类型进行确定。

  就现阶段电气自动化控制系统应用而言,其主要编程工具类型有手持编程器、图形编程器与计算机软件编程器等几种类型。其中手持编程器仅能通过有限的预设语句表进行编程操作,不仅效率低下且适用范围相对狭窄,只能满足简单操作的微型PLC编程需求;图形编程器运用梯形图进行编程操作,具备直观简洁的特点,能被运用于中型PLC编程;而采用计算机软件编程则是最为高效、简洁的方法,不过受限于计算机软件开发难度大、成本高,同时难以进行现场实际调试,因此仅被应用于矿井大型PLC控制程序构建中。有鉴于此,在编程工具的选择上,矿井必须结合自身实际,从经济优化与使用优化的双重角度出发,选择适宜的工具进行编程作业[2-3]。

  硬件架构作为矿井电气自动化控制系统的基础核心之一,其结构的良好与否同整个系统的安全、稳定有着密切关系。所以,应对其进行优化改造,具体从下述几点着手:a)输入电路优化。对于电气自动化控制系统输入电路的优化改造,应注意PLC供电电源多为80V~240V交流电,有着良好的宽幅适用性。不过考虑到井下作业环境的恶劣性及当前国内矿山供电环境的不稳定性,为确保整个电路输入系统具备良好的抗干扰性能,以维持整个电气自动化系统运行的持久、稳定,应对输入电路增设电源净化装置,譬如隔离变压器与滤波器等。以1:1的隔离变压器为例,其能借助双隔离技术,将变压器初级和次级两级屏蔽层由电气中性点接地,从而实现对脉冲干扰的有效屏蔽;b)输出电路优化。针对电气自动化系统输出电路的优化,应结合矿井实际,使用晶体管对各类标示与调试设备进行输出,以确保其有效适应设备的高频动作,并增加电路反应效率。以井下水泵机房电气自动化控制为例,当PLC控制系统输出频率为6min1次时,可选用继电装置进行输出,以确保电路结构简明的同时具备良好的抗干扰性能。不过,PLC系统在携带有感性负载进行输出时,当发生断电时极易形成浪涌电流导致其芯片的损毁。对此,应在其它电路并接续流二极管,以便能对浪涌电流进行吸收,避免其对芯片造成损害[4];c)抗干扰优化。实现井下电气自动化控制系统对外界干扰的有效抵抗也应是其日常管理的要点之一。由于井下作业环境相对恶劣,电气自动化系统抗干扰性的提升也势在必行。通常采取下述几种方式:(a)借助隔离变压装置抵抗干扰,鉴于电网中的干扰多源于绕组将电容耦合导致,适宜选用1:1的的变压装置,并使中性点通过电容进行接地;(b)布设金属外壳实现对整个系统的电磁屏蔽,同时金属外壳还可充当接地端,有效实现对静电、电磁脉冲和空间辐射等外界干扰对系统运行的负面影响;(c)优化布线,借由将强弱电力线路的分隔布设,并采用双绞线屏蔽电缆充当信号传输线,从而起到有效的抗干扰功效。

  软件作为电气自动化运行控制的核心所在,其优化程度对于整个系统优化后工作效率的提升有着直接性影响。通常来说,软件的优化改良应同硬件设施的优化同步开展,其具体内容可分为以下几点:a)软件结构优化。对于软件设计而言,其分为模块设计与基本程序设计两大类。对于井下生产作业而言,电气自动化系统运行时必须实时根据矿井生产状况进行调控,所以适宜选用模块化设计,从而为后续功能拓展提供便利。首先,将整个电气自动化控制系统控制对象划分为多个子任务模块,随后对不同模块进行单独编写与调试,最后再将单独的各模块整合成为完整的一个程序。通过这种设计方式,整个矿井的自动化电气控制系统便能依据井下生产实际情况进行实时的快速调节,确保整个系统始终运行的高效、高质[5-6];b)程序设计过程优化。对于程序的优化而言,其核心要点便是实现I/O节点的最优化分配,依据井下生产状况对I/O节点井下按需分配的同时,对各个I/O节点的控制尽可能实现集中调控,以便于后期维护作业的开展。与此同时,还应对系统中各定时与计数装置进行统一编号,从而更好地推动系统运行效率及可靠性的提升。此外,为进一步增加系统运行速度,在控制系统的逻辑设计上应秉承简洁明了的基本原则,方便指令编写输入的同时尽可能降低所占内存。而对于PLC芯片中的各类触点,则可通过合理设计进行多次的重复使用,而无需借助复杂指令降低触点使用频率。譬如,井下瓦斯监测装置的开启/关闭通过一个按钮来实现控制,就能通过二分频以达成。通过这种方法,整个电气自动化控制系统中I/O节点使用量可明显降低,实现资源节约与系统运行效率提升的双赢。

  伴随现代科技的突飞猛进,电子技术日益在煤矿生产中获得广泛应用,并对矿井生产效率的提升起到良好推动。不过,鉴于矿井电气自动化控制系统实现方式的多种多样,其不仅适用环境存在极大差异,同时运行效率与运行成本也各不相同。所以,煤矿在进行自身电气自动化控制系统的构建时必须立足自身实际,积极创新系统设计方法,优化系统设备选型与整体架构,从而在降低运行成本的同时实现控制系统运行效率的提升,进而为矿井的长久可持续发展及现代化建设提供助推力。

  [1]张红梅.电气自动化的改进方法实施策略研究[J].煤,2015(1):69-70.

  [2]李养明.煤矿电气自动化控制系统应用优化分析[J].山东煤炭科技,2015(7):105-106.

  [3]张悦,王玲.煤矿提升机电气控制系统优化设计[J].煤矿机械,2013(11):246-248.

  [4]刘学成.金桥煤矿井下排水系统优化[J].煤矿安全,2016(2):127-129.

  [5]殷佳琳,李智勇.电气自动化控制设备的可靠性测试[J].煤炭技术,2012(4):60-62.

  在电气自动化技术的应用过程中,电气自动化控制系统是主要的核心之一,它对于整个电气自动化技术的应用具有极其重要的作用,因此,在利用电气自动化技术的过程中,必须要不断的提高对于电气自动化控制系统的重视程度,明确这一控制系统的工作原理,然后结合这一控制系统的原理更好地将这一系统应用到实际工作过程中,并且使得这一控制系统可以得到更好的发展。

  对于电气自动化控制系统而言,它的组成结构比较复杂,在利用电气自动化控制系统之前,必须要首先明确它的具体组成结构,然后根据它的组成结构来进一步了解并且掌握电气自动化控制系统的功能以及特点。下面就电气自动化控制系统的具体功能以及特点进行详细的介绍:

  与其他的控制系统相比较,电气自动化控制系统的功能比较齐全。因此,在现阶段,电气自动化控制系统已经被广泛的应用到了许多行业中。它的具体功能主要包括下面几个方面:第一,利用电气自动化控制系统可以很好地对LPS这一系统进行准确的了解和监控,进而更好的实现对开关手动同期与自动同期的并网。第二,通过利用电气自动化控制系统,可以进一步对发电机进行全面的控制以及操作,大大的简化了整个工作流程。第三,应用电气自动化控制系统可以更好的实现对发电机中变压器组的保护以及控制。另外,电气自动化控制系统的应用还可以很好的实现对于高压启、备变压器的控制以及操作。

  电气自动化控制系统具有极其鲜明的特点,使得电气自动化控制系统可以得到广泛的应用。例如,与其他的控制系统相比较,电气自动化控制系统具有比较强的方便性以及快捷性。在利用电气自动化控制系统进行采集数据的时候,不仅需要采集的对象比较少,而且需要的数量也极其少,并且采集的过程也非常简单明了。另外,电气自动化控制系统具有另外一个比较显著的特点就是广泛性。到目前为止,电气自动化控制系统已经被广泛的应用到了许多行业中,尤其是许多电气自动化产品已经走进了千家万户,成为了人们日常生活中不可或缺的一部分。最后,电气自动化控制系统的工作效率非常高,通过利用电气自动化控制系统可以更好地改变传统的工作方式,克服了传统工业生产中所出现的所有弊端,减轻了人们的工作负担,同时也极大的提高了工作效率。

  电气自动化控制系统在农业生产中具有至关重要的作用。近几年来,电气自动化控制系统被广泛地应用到了农业生产的各个方面,在农业生产中的机械运作业、精准农业以及微灌自动化控制方面具有非常广泛的应用,它大大地提高了农业生产中农业机械以及仪器设备的可操作性。例如,利用电气自动化控制系统可以实现农业机械的自动播种以及施肥,并且播种以及施肥的效率也非常高。另外,在微灌技术领域中应用电气自动化控制系统,可以更好的实现滴灌设备以及喷头设计等的自动化,使得整个农业生产可以更好的实现自动化。甚至在温度传感器或者压力传感器中应用电气自动化控制系统可以更加精准的对农业生产进行管理和控制,实现了仪器设备的自动化。最后,利用电气自动化控制系统也可以很好的实现精准农业中节水的自动化控制,或者图像处理技术的自动化操作。

  在工业生产中,电气自动化控制系统也具有极其重要的作用。例如,到目前为止,我国在冶金、石油生产、发电等许多工业生产中都已经应用到了电气自动化控制系统,而这一控制系统的应用大大的促进了整个工业自动化的发展进程。电气自动化控制系统的应用很好的取代了传统的生产仪器设备。如:电气自动化控制系统取代了传统的继电器顺序控制装置,使得继电器的顺序可以更好的得到控制。另外,电气自动化控制系统对传统开关量控制装置的取代很好的实现了对整个仪器设备的逻辑控制,尤其是在机床、装配生产线等方面,更是大大的提高了这些仪器设备的工作效率。在冶金和造纸等行业中应用电气自动化控制系统可以更好的实现对于大型机械设备的控制和操作。如今,工业生产中普遍都开始广泛地应用电气自动化控制系统,并且也取得了比较显著的成就。

  电气自动化控制系统的应用大大的提高了人们的生活质量水平。例如。在交通运输方面,大部分的交通运输工具都可以利用电气自动化控制系统进行远程的管理和控制。另外,在红绿灯系统以及测速器中也应用到了电气自动化控制系统,工作人员可以通过网络直接对所有工作环节进行管理和控制。最后,在家居装置方面,电气自动化控制系统也已经被广泛的应用到了安全系统以及照明系统中,这样业务管理部门就可以对所有小区进行统一的管理和控制。

  电气自动化控制系统的功能以及特点,使得它有一个非常好的发展趋势。例如,目前为止,电气自动化控制系统已经由原来单一的设备不断的转变向了多元化、统一化以及集成化等发展趋势。进而使得电气自动化控制系统可以更好的应用到各个行业的各个生产环节中。另外,电气自动化控制系统将渐渐的走向安全化,它的安全防范技术将不断的向集成化发展,进而更好的实现仪器设备、工作人员以及环境的系统安全。最后,电气自动化控制系统将会实现通用化,而通用化可以更好的确保生产现场所有设施、计算监管以及管理系统之间的数据畅通,管理人员可以通过计算机网络对整个生产现场进行直接的监督和管理。

  总而言之,为了更好地将电气自动化控制系统应用到实际工作过程中,相关技术人员应不断加强对电气自动化控制系统深入研究,只有这样才可以更好地促进我国电气自动化控制系统的发展。

  [1]沈朝权.电气自动化控制系统的应用及发展趋势分析[J].科技创新与应用,2014(21):117.

  目前我国的电气自动化工程经历着技术不断创新的发展过程,在不断开放的环境中,电气自动化控制系统的创新能力不断提升。各大企业也不断致力于创新能力的培养,不断追求电气自动化控制系统的自主知识产权的研发。这样,各大企业在优胜劣汰中不断提高自己的竞争实力,电气自动化控制系统的技术也就得到不断的创新。

  实行电气自动化控制系统的统一化能给电气自动化控制系统的发展带来更大的变化。它能促进电气自动化产品的周期性,维修和养护各个步骤的统一化。而且,实行电气自动化控制系统的统一化能够从客户的需求出发,也就能把电气自动化控制系统独立出来。

  随着我国的电气自动化工程经历着技术不断创新的发展过程,在不断开放的环境中,电气自动化控制系统的接口也就不断的标准化。能够使各个企业的软硬件交换数据,确保各个企业之间能够将信息交流更方便,真正能将通讯产生的困难解决了。

  随着我国经济的不断发展,社会经济的各个方面都取得了很大的提高。我国作为工业为主导的社会,只有大力发展工业才能促进我国经济的飞速发展。纵观我国工业经济的发展之路,电气自动化工程在其中有相当大的作用。电气自动化控制系统更加安全化,朝着安全规范的趋势发展。分析国内市场的发展趋势,也逐步将其危险性降到最低程度。

  电气自动化控制系统在安装和设计时,专业技术人员的培训逐渐增多。专业技术人员的培训使其操作人员的维修技术不断的提高,电气自动化控制系统不断的专业化。加之越来越多的培训,电气自动化控制系统的工作技术人员更加注意培训的重要性。通过培训,工作技术人员排除故障和维修的技术得到提高。

  电气工程及其自动化是现代工业发展的关键领域,随着科技的不断更新和发展,电气自动化工程控制系统起到了很大的作用。所以,电气自动化工程控制系统的建设与发展是十分重要的。通过以上分析,提出了以下几项电气自动化工程控制系统的建设与发展的合理化建议:

  目前,各个系统工程要想得到长足发展,都与数字化相联系。所以,数字化是今后各大工程系统发展的趋势。电气自动化工程控制系统建设数字化可以使信息整体作为目标,将信息整体的数据输入到计算机中,逐渐电气自动化工程控制系统建设数字化。这样,人们在任何地方,任何时间都会查到信息数据。

  电气自动化工程控制系统建设大量的创新使用可以使电气自动化的成本降低,材料得到节省。电气自动化工程控制系统的创新使用可以使电气设备的智能化飞速发展起来,这样可以使电气自动化工程控制系统建设有个长远的发展。并且,这个系统在电气自动化工程控制系统设计过程中更加突显其目的性,创新性,实现电气自动化工程控制系统建设跨越式的发展。

  各个企业最好一起建立厂区,车间,生产。一同学习,一起分享学习的经验。各个企业共同发展,共同进步。各个企业可以根据不同的能力需求确定学校和培训的方案,培养出不同的需求的人才。各个企业不能总用一种培训方式,要根据不同的需求,不同的时间段确定电气自动化的人才培训方案。各个岗位群体进行科学研究,总结这些岗位培训的经验和技术能力。教师在教学过程中也要不断的总结教学经验,重点研究实践能力,对学习内容进行优化处理,让学员更好的参加社会实践。

  近些年来,随着科学技术的不断进步,电气工程与自动化控制系统技术水平也日益提高,在工业生产中占据着重要地位,具有提高自动化水平、提高生产效率、延长设备使用年限等特点。因此,做好电气工程与自动化控制系统的实践是企业应当重视的工作。

  (1)电气工程与自动化控制系统的设计。在电气工程与自动化控制系统设计中,主要有闭环控制、开环控制以及复合控制三种,其中,闭环控制控制过程是根据给定值和反馈量偏差来完成的,能够预防震荡,确保控制装置正常工作。开环控制的控制装置与受控对象之间是顺向作用,优点在于控制过程、系统结构简单,不足之处是控制精度差、抗干扰能力低,主要适用于对控制性能要求相对偏低的场合。复合控制是一种反馈控制方式,只有在被控量变化后,控制系统才会进行调节与控制,控制过程、被控量不会受复合控制的影响。

  (2)电气工程与自动化控制系统的方式。电气工程与自动化控制系统主要可以分为集中式、分布式以及信息集成化三种,具体是指:

  首先,集中式控制系统。此种控制系统只有一个处理器,承担着系统的所有功能的处理任务,其优点是系统结构简单、设计与操作简便、维护成本较低,其缺点有在监控对象增加时,处理器工作效率会降低,处理工作过程会受任务多少影响,主机使用空间减少,在功能增加时,只能通过增加电线方式解决,会增加成本,影响系统可靠性[1]。

  其次,分布式控制系统。此种控制系统有多个控制回路,每个控制回路分别承担一部分系统功能,可以有效解决集中式控制系统的不足,同时实现对数据的集中获取、管理与控制。但是,分布式控制系统也存在一定不足,主要是受仪表类型复杂、标准不一影响,会增大维修工作难度。

  第三,信息集成化控制系统。信息化集成控制系统是在计算机技术、信息技术等基础上发展出来的一种控制系统,是指在电气自动化控制设施与机械设备之间以信息技术作为连接,比如微电子处理技术等,提高信息获取效率,提升控制系统自动化水平。

  (3)电气工程与自动化控制系统的重要性。在工业生产中,电气工程与自动化系统起着十分重要的作用,具体体现在以下三方面:

  首先,能够提高设备的可靠性,通过自动化系统,可以对电气工程相关设备状态进行自动检测,检验元件参数指标以及可靠性,确保在各种环境条件下,设备都可以良好运行,并对其进行相应改进与完善,确保电气工程的可靠性。

  其次,可以增强系统的适用性,在生产过程中,电气工程与自动化系统能够自动记录所有的运行数据,并通过对数据的自动分析、对比,根据实际需求来对工作进行自动控制与调节,从而有效增强系统的适用性。

  第三,可以提高生产的先进性,在工业生产中,自动化控制水平是一项十分重要的衡量指标,通过应用电气工程与自动化控制系统,可以自动完成对生产过程与产品的测试工作,在保证产品品质的同时,提高生产效率,从而实现生产先进性的提升[2]。

  (1)在智能化方面的实践。在电力系统当中,其运行的可靠性、安全性等与智能化水平有着密切联系。因此,将电气工程与自动化控制系统应用于系统的智能化当中,可以提高系统的自动调节能力,解决电气工程早期自动化控制存在的不足,促进电气工程的进步,有效提升电气工程自动化控制的整体水平。

  对于智能化控制器而言,其优点主要是可以同时完成诸多不同数据的处理,也可以承担一些其他控制器难以完成的工作,比如难度较高、危险性较大的工作。电气工程与自动化控制系统在智能化方面实践,不仅体现在提高智能化技术的先进性、实用性方面,还体现在增加电气工程的稳定性上。

  在未来工业发展趋势中,智能化方面电气工程与自动化控制系统应用将会越来越加广泛,分布在智能化的各个领域,对智能化的发展与进步起着重要促进作用。

  因此,应当加强对电气工程与自动化系统在智能化方面实践的研究,针对不同问题采取相应的措施,可以提高智能化中电气工程与自动化系统可靠性与安全性,避免事故发生[3]。

  (2)在变电站配电的实践。在变电站配电中应用电气工程与自动化控制系统,会对变电站运行设备故障与事故进行自动记录,利用监控、操作的图像化与智能化特点,不仅可以提高变电站运行效率,也能够有效提高变电站配电自动化系统的管理水平,对变电站配电进步有着重要意义,有助于促进电气工程自动化控制的发展。

  (3)在电厂分散测控系统的实践。在电厂运行中,分散测控系统是一项十分重要的内容,可以对电厂锅炉、发电机等运行状态进行动态、实时测控,及时发现潜在隐患与问题并加以解决,确保电厂运行的安全可靠。在电厂分散测控系统中,采取的通常是分层分布结构,将电气工程与自动化系统运用与电厂分散系统中,可以提高分散测控系统的监测工作的效率与准确性,实现自动化控制,起到保护分散监控系统的作用,提升系统稳定性。

  综上所述,电气工程与自动化控制系统是国家社会经济发展的重要基础,加强对电气工程与自动化控制系统的了解,掌握其设计方式、控制系统模式等内容,将其合理应用于工业生产的实践当中,对于工业生产效率提升、产品质量等起着重要保障作用。因此,对电气工程与自动化控制系统的实践展开研究,借鉴先进技术,提高系统的稳定性与可靠性,对电气工程与自动化控制系统发展有着重要意义。

  [1]刘胜君.探究电气工程及自动化的控制系统的应用[J].科技风,2015(19):67+69.

  [2]马立国.关于电气工程及自动化的控制系统应用的研究[J].黑龙江科技信息,2014(20):22.

  PLC是科技含量比较高的控制器,既可以实现数字编程,也可以体现存储控制,着实满足电气控制的需要。近几年,PLC呈现自动化的发展趋势,在电气控制中的应用效果更为明显,体现自动控制的优势,改善传统电气控制的系统缺陷。我国在PLC电控应用中,投入大量科研力量,有效拓宽PLC在电控领域中的应用范围,在PLC自动化的应用状态下,推进电气控制的发展。

  PLC自动化具有明显的优势,将其应用于电气控制中,更是体现诸多良性特点,如下:

  (一)提升电控系统的防干扰能力。传统电气系统在控制上,需要借助诸多线路结构,由于线路之间过电后,存在电磁感应,导致电气控制受到干扰影响,削弱控制能力。PLC在电气控制中的应用,将线路结构换为集成电路,同时运用防干扰技术,避免环境因素对电控系统的产生干扰[1]。在将PLC应用于电气控制时,技术人员还可以根据电气控制所处的实际环境,分析干扰源,通过编程写入PLC系统内,提高防干扰能力。

  (二)降低电控系统的维护量。PLC在电气控制中能够改善系统环境,避免大量线路参与,PLC自动化中的逻辑功能,可以代替线路连接,降低电控系统设计的工作量,而且PLC的使用能力较强,避免电气系统在控制时高频率的维护。PLC以自身高科技的特性,降低电气控制的维护量,保障电控系统适应于各类应用环境,合理进行系统维护,提高电气控制的维护能力。

  (三)提高电控系统的操作度。PLC取缔电气控制中的大量设备和系统,简化电控系统的组成。PLC在编程、存储时,使用较为简单的控制符号和命令,易于理解和识别,通过简单的PLC设置或操作,即可完成电气系统的控制执行。目前,PLC在电控系统中得到推行应用,主要是由于PLC便捷操作的特性,不需要耗费大量的人力、物力,所以,掌握PLC的基本编写方式,能够实现电气控制科学的操作。

  以PLC为研究背景,探讨其在电气控制中的应用,体现PLC自动化的优势,汇总分析如下:

  (一)集中控制系统。在电气集中控制系统内,PLC发挥较强的集控功能。通过PLC自动化,将电气设备的控制放置于同一空间内,实现集中监控[2]。电气控制内的设备,全部由统一的PLC系统监控,达到中央控制的状态,例如:以PLC为中央控制器,将电气设备接入PLC系统内,通过PLC即可集中监控电气系统内的所有设备,提高监督、控制的效率。

  (二)分散控制系统。分散控制应用于特殊电气系统,主要是加强对电器设备的控制力度。将需要分散控制的电气设备,配置单独的PLC,体现对应控制的功能。分散控制对PLC的要求较高,既要体现灵活控制的特点,又要排除分散控制多方线路的影响,避免分散PLC造成相互干扰。

  (三)开关量的控制。PLC在电气开关控制中较为常用,体现逻辑与顺序优势,不仅有效分开各项开关控制的功能表现,而且实现电气开关的独立控制。例如:电气系统内的运行设备,在PLC自动化参与下,可以设置独立开关,专门对运行设备实行单独控制,避免其他设备的控制干扰,365wm完美体育官网还可以实现多项设备的单一控制,表现PLC对开关量的精确作用。

  (四)电气运动控制。PLC自动化本身具备运动可控的优势,能够对正在进行运动的点进行快速控制,例如:PLC在电梯中的应用,即是运动控制的最好体现。基于PLC自动化的电气运动控制,主要是借助PLC的控制模块,直接接入电控系统,通过PLC控制模块,发送相关的控制指令,控制处于运动过程中的电气设备,体现PLC对运动控制的优势。

  (五)数据处理控制。电控系统中,数据信息是主要支持部分,在大量数据准确传送与读取的过程中,完成电气控制,但是由于电控系统内的数据量较为复杂,导致其在处理上表现出低效性,不能保障数据处理的可靠控制。因此,将PLC自动化,引入到数据控制中,发挥PLC高效处理数据的能力,实现电控数据的收集与分析,同时合理下达部分数据命令。PLC自动化在数据控制中的应用非常广泛,体现PLC数据分析的能力和优势。

  (六)模拟量控制。模拟量是电气控制中的主要数据参数,包含大量参数变化量,如:压强、湿度等,PLC可以为参数运行提供通畅环境,避免参数处理混淆[3]。以液位参数为例,利用PLC能够协助模拟量迅速实现模拟到数字、数字到模拟的信号转换,实现转化信号的有效记录,提高电气控制的监督能力,避免数据信号丢失。

  PLC自动化在电气控制中,虽然具备防干扰的能力,但是仍旧存在提升空间,如果电控系统处于多方干扰的环境内,PLC的防干扰效果也会受到影响[4]。因此,我国将防干扰作为PLC的主要研究方向,促使PLC未来在电气控制中,不仅能够表现高强度的防干扰能力,还可以体现自动判断干扰源,快速采取防护措施的能力,保障PLC的系统抗干扰性质。PLC自动化在电气控制中,逐步吸收更先进的技术,推进电气控制的成熟发展,在保留原有优点的基础上,发挥更大的控制价值,提高应用能力。

  在电气控制领域内,PLC自动化属于新型技术,既可以避免电气控制出现原有弊端,也可以提高电控控制的能力和能效,降低电控系统的工作量。我国在PLC应用方面,给予极大的关注态度,促使PLC的发展更加深入,体现自动技术特性,科学提出改进措施,保障PLC自动化在电控系统中的应用更加协调,创造更大的社会效益。

  [2]王仁亮.试论PLC在电气控制中的应用[J].科技致富向导,2012(15):34-36.

  随着我国工业生产的高技术化,电气自动化控制技术在我国也有着广泛的应用和实际生产经验。当前经济的进步是和电气自动化技术分不开的,相比与传统的热机设备,其操作人员的控制目标、操作频率和系统对人员的依赖性都大幅度降低,因而对工业生产稳定性和产品的合格率提高具有有效促进。

  在二十世纪五十年代左右随着电力的普及,工业生产中逐步采用的电机等电力设备,随之而来的技术革新使生产中逐步使用了一些简单的自动化设备,并在随后一段时期内逐渐出现并使用了一些控制系统,从而在一定程度上提高了工业生产的自动化水平。一般认为,电气自动化控制技术是指在工业生产中通过采用具有较高自动化水平的控制系统,利用电机等传动系统进行生产操作和生产管理控制以提高生产效率和经济效益的技术。

  经过不断的探索和技术革新,电气自动化控制技术已经和现代化的工业生产技术密不可分。上世纪60年代计算机技术开始普及以来,工业生产中具有现代化特点的控制理论也逐步提出,电气自动化控制技术在实际应用中开始具有信息化的特点,综合自动化的特性更加突出。到70年代计算机网络技术和微电子技术在工业生产中成功投入使用,则使电气自动化控制技术在生产中的作用更加深入化、全面化和综合化,365wm完美体育官网开始控制和管理对象更加多样性操作更加复杂的生产技术和生产体系。经过不断探索和汲取科学前沿的技术,当前电气自动化控制技术已经融入工农业、医学、军工和交通及人工智能等各个方面的制造和技术应用中,成为工业现代化和高新技术的核心。

  集中管控、远程监控以及总线管控是实现电气自动化控制的三种常见的控制模式。第一种模式即一个控制中心集中处理控制系统内的数据和进行自动管理,设计相对简单且防护与维护技术难度较低,但处理器工作量较高,效率较低且主机冗余增加;第二种模式可靠性有所提升,综合考虑材料和电缆等设备安装成本较低,但系统通讯量较大,系统的信号传输水平对整体影响较大,在实际生产中经常因为传输设备和总线的通讯稳定性限制系统性能;最后一种模式则是融合上述控制模式的特点,融合符合自动化控制设计的理念形成。

  电气自动化控制系统在实际生产中主要采用Windows NT等语言环境,并且该语言环境下的人机交互体系的主流的发展方向。这种语言环境下,控制系统具有较高灵活性,集成操作模块和维护方面具有较好的兼容特性和便捷性,从而使控制系统的操作和维护更加简便和人性化,减少了因操作和维护中的失误所带来的生产风险。

  随着技术的发展,电气自动化控制技术不仅采用了较为便捷的操作语言,而且伴随IEC61131电气自动化控制技术国际标准的颁布,控制系统厂商具有了更加统一的生产标准;同时由于以太网和Internet及服务器模式的完善,自动化控制体系的信息化特性更加明显。其发展过程中的多次技术革新,计算机网络技术和多媒体技术在电气自动化控制领域中的应用开始逐步推进。例如工业生产中,管理方面可以通过远程或者计算机系统进行生产操作的过程监控、数据采集、故障分析和实时的监管和操作等。因此,具有较高信息化水平的电气自动化控制体系是未来发展的主要方向。

  电气自动化技术可以运用数字电路以及单片机等技术对生产中的信号采集单位的实时生产数据进行处理,从而对生产工程的生产状况进行判别。由于电气自动化控制技术的优越性,有效地避免了人工管理中的不确定性因素,不再以来于操作人员的技术水平和操作经验,生产中的安全可靠性得到极大提高。

  由于电气自动化技术系统的特点,控制系统能够高速处理各种实时数据,且能够在大量的数据环境中快速做出判断和发出操作指令,这个过程由于对数据分析的针对性从而保证了操作指令和设备生产过程中生产动作的及时、准确、有效性。相对于人工操作对操作人员的依赖性,电气自动化控制技术的错误概率是非常低的,因而具有工业生产所预期的高效和稳定性。同时由于电气自动化控制体系的信息化特性,与多样化的管控操作设备之间具有较高的兼容性和交互性,控制中心能够及时收到监控模块的反馈信息,使自动化控制系统的高效性进一步提高。

  科学技术的不断推动使工业生产所涉及的领域达到前所未有的范围。因而在实际生产中,从原料到特殊的生产工艺和生产流程更加复杂和多样化,而且对生产技术中的某些环节具有极高的技术参数要求,出现了大量不适宜人类进行操作或者具有较高技术难度以及较危险环境的生产流程。而电气自动化技术的出现则是这一类行业解决问题的关键。电气自动化控制系统高效性、实时性和精准化的特点使其能够代替人工劳动力进行特定环境下的操作,保证人员安全的同时也有效提高了工业生产的效率和产品质量。

  电气自动化系统具有对操作人员所不能感知的内部数据具有实时的监测能力,因而对系统内部的稳定运营可以具有保护能力。例如电路电流量、静电值、电容放电异常等参数或异常,能够技术处理反馈并采取相应措施,因而电气自动化控制技术对生产系统具有安全保护性。

  电气自动化技术经历长期的技术探索发展革新,融合的不同时期的前沿技术,时至今日已成为工业生产和其他相关行业中不可分离的一部分,是工业和现代化技术的关键所在。随着相关行业进步,电气自动化控制技术将会更加完善。

  [1]方毅.对于工厂中电气自动化控制技术的探究[J].科学导报,2015,(1)

  随着我国科技的飞速发展,带动了工业等一些生产领域向着世界先进水平迈进,电气自动化控制技术是近年来发展的新型技术并被广泛的应用到工业领域,电气自动化控制技术是工业实现现代化的重要标志,企业在生产中实现自动化不但能够节约劳动力成本,减少了由于人工操作带来的不精确性,提高了企业的生产质量,还能够极大的提高企业的生产效率和经济效益,因此研究电气自动化控制技术就显得十分重要。

  电子自动化控制技术是计算机技术,通信技术,信息技术和控制技术等多种技术相互融合产生的一种新技术,在人们对工业生产工业的要求越来越高的背景下,加强电气自动化控制技术的研究,是工业企业的必然选择。

  电气自动化的发展会受一些因素的影响,如信息技术以及物理科学等因素,其中信息技术对电气自动化发展的影响是最大的。电气自动化控制技术是随着信息技术的发展而发展的,信息技术在这里起着非常大的支撑作用。受该技术的影响,电气自动化控制技术也在很多发面取得了很大的进步,如对信号的处理,对信息的监控以及系统的构建等。因此,信息技术是电气自动化控制技术最重要的影响因素。不过电气自动化控制技术从整体的发展上看,以上的那些影响因素虽然是电气自动化技术的发展基础,但同时也限制着该项技术未来的发展。只有信息技术与物理科学等因素都能快速的发展,才能提升电气自动化的发展速度。

  第一,电气自动化控制技术目前己经是各大工业领域的一项核心技术,进一步的满足了工业企业在发展过程中的需求。

  第三,电气自动化控制技术的使用进一步提高了工业技术的发展速度,对工业技术的影响非常的大。

  从整体情况来看,电气自动化控制技术在未来的很长时间内,都广泛应用在各大工业领域,肯定会给工业企业的发展带来巨大的变化,从而提高工业企业的发展速度。因此,我们一定要全面掌握电气自动化的控制技术,不断的提升电气自动化控制技术的使用技能,扩大该技术的使用范围。

  要想把电气自动化控制技术的作用充分的发挥出来,提升该技术的使用效果,需要与实际的控制对象相结合,从而设计出电气自动化控制的系统,达到自动控制的目的。接下来分别从电气自动化控制技术的特征、作用以及设计的理念几个方面进行分析。

  第一,电气自动化控制技术的控制对象不多、信息量不大、操作的频率也不高,365wm完美体育官网但它的优点是比较准确和高速度。

  第二,电气自动化控制系统传输信号的速度非常快,反映也很灵敏,用很短的时间就可以掌握控制的整个过程,同时还能对远程的信号进行更加有效的控制。

  第三,和传统的控制系统相比较,电气自动化控制系统的控制时间比较短,控制的效率比较高。

  第四,电气自动化的控制系统最明显的特征是可以实现对远程的监控和远程信号的输出,同时更加方便,更加有效的对远程的监控对象进行控制。

  第三,电气自动化控制技术可以把联合很多个系统,方便系统之间的互动,从而从整体上提高系统的功能。

  电气自动化控制的系统主要有三种设计方案,分别是对远程进行监测、采取集中监测以及对场地总线进行监测。

  第一,采用集中监测方法的具体特点是只利用一个处理器进行处理,优点是设计相对简单、在防护方面的要求相对比较低、便于维护和运行。

  第二,远程监测系统是不断的采集和传送远程信号,同时对控制信号进行输出,从而达到对远程系统监测的目的。

  第三,对现场总线的监测是指把很多的控制功能集中到了一起,从而达到对各种信号有效监控的目的。

  从电气自动化控制系统的整体设计以及整体的结构方面去看,以上的三种电气自动化控制系统的设计方案都在各大领域中大面积的使用,在对电气自动化控制系统进行设计时,一定要按照实际的需求,有效的对以上的三种设计方案做出选择,从而达到设计的需要,进一步提高电气自动化控制系统的作用。

  从近年来各大企业对电气自动化控制技术的使用情况来看,电气自动化控制技术未来主要会有以下三个发展趋势:

  第一,电气自动化控制技术会向着工业技术智能化的趋势去发展。根据电气自动化控制技术的相关优势以及该技术的智能化水平,电气自动化控制技术很可能会向着工业技术智能化的趋势发展, 同时可以有效的去解决工业发展过程中的各种问题, 从而进一步对控制质量进行提高。

  第二, 电气自动化控制技术会向着高效率的趋势去发展。电气自动化控制技术的核心目的是对系统进行有效的监控, 随着近年来信息技术以及电脑技术的发展, 电气自动化控制系统的监控效率也会随着提高, 该技术必将向着高效率的趋势发展。

  第三, 电气自动化控制技术会向着集成化的趋势发展。随着虚拟现实技术以及视频的处理技术被大面积使用, 会对以后很多自动化的产品造成影响, 相对应的软件结构以及通讯的能力就显得更加重要, 这正是一种集成化的发展趋势。